Dalam topologi dan subbidang matematika terkait, ruang topologi dapat didefinisikan sebagai sebuah himpunan titik-titik beserta hubungan lingkungan antara titik-titik tersebut. Pentingnya konsep topologi adalah, ia dapat memberikan ide yang persis tapi umum kepada konsep-konsep kedekatan dan kekontinuitasan. Ruang topologi adalah struktur yang memperkenankan kita untuk memformalkan konsep seperti , keterhubungan dan kontinuitas.
Terdapat beberapa cara lain yang setara dalam mendefinisikan sebuah topologi atas sebuah himpunan, misalnya melalui himpunan terbuka atau melalui . Definisi-definisi ini mungkin tidak seintuitif definisi ketetanggaan, tetapi sering kali definisi lain secara logis lebih sederhana dan untuk beberapa kasus memberikan metode yang paling baik untuk mendefinisikan sebuah topologi atas sebuah himpunan.
Definisi
Kebergunaan konsep topologi ditunjukkan dengan banyaknya definisi yang setara, sehingga diperlukan pemilihan definisi yang cocok untuk masing-masing aplikasi. Definisi yang paling sering digunakan adalah melalui himpunan terbuka, tetapi definisi yang lebih intuitif mungkin melalui hubungan .
Definisi melalui hubungan ketetanggaan
Definisi ini dicetuskan oleh Felix Hausdorff. Misalkan X adalah sebuah himpunan, dengan anggota-anggotanya yang sering kali disebut titik-titik, meski sebenarnya bisa objek matematis apapun. X boleh himpunan kosong. Pilih sebuah fungsi N yang menyematkan kepada setiap titik x sebuah koleksi N(x) keluarga subhimpunan dari X. Anggota-anggota dari N(x) disebut ketetanggaan dari x terhadap N (atau cukup, ketetanggaan dari x). Fungsi N disebut topologi ketetanggaan jika aksioma-aksioma di bawah terpenuhi; dan pasangan (X, N) adalah sebuah ruang topologi.
- Jika N adalah ketetanggaan dari x (N ∈ N(x)), maka x ∈ N. Dalam kata lain, setiap titik merupakan anggota dari ketetanggaannya.
- Jika N adalah subhimpunan dari X dan memuat sebuah ketetanggaan dari x, maka N adalah ketetanggaan dari x. Setiap superhimpunan dari ketetanggaan sebuah titik merupakan ketetanggaan titik itu pula.
- Irisan dua ketetanggaan dari x adalah sebuah ketetanggaan dari x juga.
- Seluruh ketetanggaan N dari x memuat ketetanggaan M dari x sedemikian sehingga N adalah ketetanggaan dari seluruh titik-titik di M.
Tiga aksioma pertama dari hubungan ketetanggaan memiliki maksud yang jelas. Aksioma ke-empat memiliki peran penting dalam menentukan struktur topologi ketetanggaan N, yaitu menentukan hubungan ketetanggaan dari titik-titik yang berbeda.
Contoh umum dari hubungan ketetanggaan adalah sistem ketetanggaan pada garis bilangan riil, dimana N adalah ketetanggaan dari sebuah bilangan riil x jika ia memuat sebuah interval terbuka yang memiliki x sebagai anggotanya.
Dengan struktur demikian, sebuah subhimpunan U dari X disebut subhimpunan terbuka jika U merupakan ketetanggaan bagi seluruh anggotanya.
Definisi melalui himpunan terbuka
Diberikan himpunan tak-kosong X, suatu koleksi yang berisikan himpunan-himpunan bagian dari X dikatakan topologi pada X, jika ia memenuhi
- X dan himpunan kosong termuat di dalam .
- Sembarang gabungan (berhingga ataupun tak hingga) dari himpunan-himpunan di termuat di pula.
- Irisan berhingga dari himpunan-himpunan di berada di pula.
Pasangan dikatakan ruang topologi, dengan koleksi disebut sebagai topologi pada X, serta anggota disebut sebagai himpunan terbuka dari X.
Definisi melalui himpunan tertutup
Menggunakan , aksioma-aksioma di atas yang menggunakan himpunan terbuka dapat diubah menjadi aksioma-aksioma menggunakan himpunan tertutup:
- Himpunan kosong dan X merupakan himpunan tertutup.
- Sembarang Irisan dari himpunan tertutup juga tertutup.
- Gabungan berhingga dari himpunan-himpunan tertutup juga tertutup.
Menggunakan aksioma-aksioma ini topologi pada X ditentukan oleh koleksi keluarga subhimpunan tertutup dari X dengan komplemennya adalah himpunan terbuka.
Definisi lain
Ada banyak cara lain yang setara untuk mendefinisikan topologi pada sebuah himpunan, atau dengan kata lain, definisi melalui hubungan ketetanggaan, himpunan terbuka, maupun himpunan tertutup dapat dibangun kembali dari konsep lain dan masih mematuhi aksioma-aksioma tersebut. Misalnya, melalui , dan dari kumpulan .
Referensi
- Armstrong, M. A.; Basic Topology, Springer; 1st edition (May 1, 1997). ISBN 0-387-90839-0.
- Bredon, Glen E., Topology and Geometry (Graduate Texts in Mathematics), Springer; 1st edition (October 17, 1997). ISBN 0-387-97926-3.
- ; Elements of Mathematics: General Topology, Addison-Wesley (1966).
- ; Point Sets, Academic Press (1969).
- , Algebraic Topology, (Graduate Texts in Mathematics), Springer; 1st edition (September 5, 1997). ISBN 0-387-94327-7.
- Lipschutz, Seymour; Schaum's Outline of General Topology, McGraw-Hill; 1st edition (June 1, 1968). ISBN 0-07-037988-2.
- ; Topology, Prentice Hall; 2nd edition (December 28, 1999). ISBN 0-13-181629-2.
- Runde, Volker; A Taste of Topology (Universitext), Springer; 1st edition (July 6, 2005). ISBN 0-387-25790-X.
- and ; , Holt, Rinehart and Winston (1970). ISBN 0-03-079485-4.
wikipedia, wiki, buku, buku, perpustakaan, artikel, baca, unduh, gratis, unduh gratis, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, gambar, musik, lagu, film, buku, permainan, permainan, ponsel, telepon, android, iOS, apel, ponsel, samsung, iPhone, xiomi, xiaomi, redmi, kehormatan, oppo, nokia, sonya, mi, pc, web, komputer